Skip to content
  • de
  • en
  • COORNETs
  • Technical University of Munich
Technical University of Munich
  • Home
  • News
    • News archive
  • Projects & PI Teams
    • COORNETs - Phase II
    • COORNETs - Phase I
  • WebCon 2021
    • Surface-Based Self-Assembly of Coordination Nano-Architectures
    • Dipolar Rotor MOFs Constructed from Linkers with High Dipole Moments
    • Porphyrin and phthalocyanine-based thin film
    • Electrocatalytic Coordination Networks
    • Layer-orientated 2D Conjugated Metal-Organic Framework Films toward Directional Charge Transport
    • Multiphoton Absorption in Metal-Organic Frameworks
    • Thin MOF films with photoswitchable electronic properties and On-Off conductance
    • Ln-MOF Thin Films and Particles in Luminescent Performance-Polymer Composites
    • MOF@SAW: MOFs In Electric Fields
    • Functional Porous Organometallocavitands in Network Materials
    • Multi-layer Thin Films of Metal Hexacyanometallates
    • Electroactive MOF networks
    • Coordination networks for sensing in medicine
  • Members
  • Mercator-Fellow
  • Events & Workshops
  • Publikationen
  1. Home
  2. Projects & PI Teams
  3. COORNETs - Phase II

Electrocatalytic Coordination Networks

Consortium: 
 Prof. Dr. Stefan Kaskel, Dresden
Technische Universität Dresden
Anorganische Chemie I
 Prof. Dr. Xinliang Feng, Dresden
Technische Universität Dresden
Molekulare Funktionsmaterialien
 Prof. Dr. Eike Brunner, Dresden
Technische Universität Dresden
Fakultät für Chemie und Lebensmittelchemie, Lehrstuhl für Bioanalytische Chemie
Project:Electrocatalytic Coordination Networks
Abstract:Porous coordination networks (PCNs) are ideal candidates for selective electrocatalytic transformations since they enable highly selective adsorptive separations of small molecules inside pores and at the same time the integration of catalytically active sites, originating from transition metals as nodes or dopants generating tunable redox functions as building blocks in electrocatalytic coordination networks. PCNs developed in the 1st funding phase perform as highly active and selective electrocatalysts, however limitations in electrical conductivity for established CN systems and the instability of some CNs towards aqueous electrolytes reveal the need for exploring the synthesis of new PCN electrocatalysts. As a technical challenge, processing such materials into thin film electrodes is a key requirement to achieve high performance catalysts. Electrocatalysis for the generation of valuable intermediates poses a huge potential for the use of low-cost electrical energy emerging from the fluctuating energy supply of renewable resources. Electrocatalytic reduction of greenhouse gases such as CO2 (CO2RR) and conversion into valuable fuels such as methanol and methane is a promising target. Electroreduction of N2 (NRR) is a visionary target to reduce energy consumption for fertilizer production. Moreover a high potential of highly selective CNs is anticipated for fine chemical intermediates, for example the selective oxidation of polyols derived from biomass. This project will develop the next generation of electronically conductive coordination networks (ECNs) and their integration into electrodes for electrocatalysis where the CN enhances the product selectivity and the electron transfer is realized either by the I) coordination network itself, or II) a catalytically active nanomaterial using a composite approach. In an interdisciplinary approach the project will cover the whole process chain from the design and synthesis of molecular building blocks, ECN synthesis, development of required processing and advanced in situ-characterization techniques towards function demonstration in selected electrocatalytic model reactions including, CO2 and N2 electroreduction and polyol electrooxidation for the production of fine chemicals.
Publications: 
 R. Dong, Z. Zheng, D. C. Tranca, J. Zhang, N. Chandrasekhar, S. Liu, X. Zhuang, G. Seifert, X. Feng
“Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal–Organic Frameworks for Electrocatalytic H2 Production”
Chem. Eur. J. 2017, 23, 2255-2260
DOI: 10.1002/chem.201605337
 L. Borchardt, Q.-L. Zhu, M. E Casco, R. Berger, X. Zhuang, S. Kaskel, X. Feng, Q. Xu
“Toward a molecular design of porous carbon materials”
Mater. Today 2017, 20, 592-610
DOI: 10.1016/j.mattod.2017.06.002
 W. Ju, A. Bagger, G.-P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser
“Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2”
Nat. Commun. 2017, 8, 944
DOI: 10.1038/s41467-017-01035-z
 R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. S. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Canovas
“High-Mobility Band-Like Charge Transport in a Semiconducting Two-Dimensional Metal–Organic Framework”
Nat. Mater. 2018, 17, 1027-1032
DOI: 10.1038/s41563-018-0189-z
 G. Chen, J. Zhang, F. Wang, L. Wang, Z. Liao, E. Zschech, K. Müllen, X. Feng
“Cobalt-Based Metal–Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries”
Chem. Eur. J. 2018, 24, 18413-18418
DOI: 10.1002/chem.201804339
 H. Bunzen, F. Kolbe, A. Kalytta-Mewes, G. Sastre, E. Brunner, D. Volkmer
“Achieving large volumetric gas storage capacity in metal-organic frameworks by kinetic trapping: A case study of xenon loading in MFU-4”
J. Am. Chem. Soc. 2018, 140, 10191-10197
DOI: 10.1021/jacs.8b04582
 J. Zhang, G. Chen, K. Müllen, X. Feng
„Carbon-Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts”
Adv. Mater. 2018, 30, 1800528
DOI: 10.1002/adma.201800528
 R. Dong, Z. Zhang, D. C. Tranca, S. Zhou, M. Wang, P. Adler, Z. Liao, F. Liu, Y. Sun, W. Shi, Z. Zhang, E. Zschech, S. C. B. Mannsfeld, C. Felser, X. Feng
“A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior” 
Nat. Commun. 2018, 9, 2637
DOI: 10.1038/s41467-018-05141-4
 J. B. Richter, C. Eßbach, I. Senkovska, S. Kaskel, E. Brunner
“Quantitative in situ 13C NMR studies of the electro-catalytic oxidation of ethanol”
Chem. Commun. 2019, 55, 6042-6045
DOI: 10.1039/C9CC02660F
 C. Eßbach, I. Senkovska, T. Unmüssig, A. Fischer, S. Kaskel
“Selective alcohol electrooxidation by ZIF-8 functionalized Pt/carbon catalyst”
ACS Appl. Mater. Interfaces 2019, 11, 20915-20922
DOI: 10.1021/acsami.9b06122
 S. Xu, G. Wang, B. P. Biswal, M. Addicoat, S. Paasch, W. Sheng, X. Zhuang, E. Brunner, T. Heine, R. Berger, X. Feng
“A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries”
Angew. Chem. Int. Ed. 2019, 58, 849-853
DOI: 10.1002/anie.201812685
 C. Yang, R. Dong, M. Wang, P. S. Petkov, Z. Zhang, M. Wang, P. Han, M. Ballabio, S. A. Bräuninger, Z. Liao, J. Zhang, F. Schwotzer, E. Zschech, H.-H. Klauss, E. Cánovas, S. Kaskel, M. Bonn, S. Zhou, T. Heine, X. Feng
“A semiconducting layered metal-organic framework magnet” 
Nat. Commun. 2019, 10, 3260
DOI: 10.1038/s41467-019-11267-w
 H. Zhong, K. Hoang Ly, M. Wang, Y.Krupskaya, X. Han, J. Zhang, J. Zhang, V.Kataev, B. Büchner, I.M. Weidinger, S. Kaskel, P. Liu, M. Chen, R. Dong , X. Feng
“Phthalocyanine-based layered two-Dimensional conjugated metal-organic framework as highly efficient electrocatalyst for oxygen reduction reaction”
Angew. Chem. Int. Ed. 2019, 58, 10677-10682
DOI: 10.1002/anie.201907002
 M. Wang, M. Ballabio, M. Wang, H.-H. Lin, B. P. Biswal, X. Han, S. Paasch, E. Brunner, P. Liu, M. Chen, M. Bonn, T. Heine, S. Zhou, E. Cánovas, R. Dong, X. Feng
“Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks”
J. Am. Chem. Soc 2019, 141, 16810-16816
DOI: 10.1021/jacs.9b07644
To top

COORNETs


Coordination Networks: Building Blocks for Functional Systems
DFG Priority Program 1928

Coordination:
Prof. Dr. Roland Fischer
Technical University of Munich
Lichtenbergstr. 4
85748 Garching

E-Mail: coornets(at)tum.de

  • Privacy
  • Imprint
  • Accessibility