Development of Electrically Conductive MOFs and their Integration in Multiparametric MOF@SAW Sensor Devices

Development of Electrically Conductive MOFs and their Integration in Multiparametric MOF@SAW Sensor Devices

Consortium: Prof. Thomas Bein, Munich
Ludwigs Maximilians University (LMU)
Department for Chemistry and Center for NanoScience
  Dr. Dana D. Medina, Munich
Ludwigs Maximilians University (LMU)
Department for Chemistry and Center for NanoScience
  Prof. Timothy Clark, Erlangen
Friedrich-Alexander-Universtät Erlangen-Nuernberg (FAU)
Computer Chemistry Center
Projekt: Electroactive MOF Networks
   
Abstract: In the framework of the EMOF project in COORNETs, we aim to design and synthesize novel MOF networks that consist of electroactive organic building units aligned as molecular stacks and study their photophysical properties in the form of thin films. For this purpose, we choose the so-called 2D-MOF or MOF-74 topologies, which allow rigid semiconducting and dye molecules to be positioned in a periodically stacked manner. Thin MOF films will be synthesized on conducting substrates with precise control over their thickness and crystallite orientation. An orthogonal arrangement of the molecular stacks with respect to the substrate surface is expected to yield charge percolation pathways along the stacks. These aspects will be studied in the context of device fabrication, which will shed light on the transport properties of the MOFs such as hole-mobility and electrical conductivity. Furthermore, physical properties such as photon absorption and fluorescence lifetimes will help to understand the underlying principles of the dye molecular aggregation in the MOFs. Theoretical studies will provide insight into the possible layer interactions, molecular packing and charge carrier transport paths, and help to design new MOF-based frameworks with desired properties. Finally, we will aim to assemble ordered bulk heterojunctions from such MOF networks that could be integrated into optoelectronic devices.
   
Publications: H. X. Deng; S. Grunder; K. E. Cordova; C. Valente; H. Furukawa; M. Hmadeh; F. Gandara; A. C. Whalley; Z. Liu; S. Asahina; H. Kazumori; M. O'Keeffe; O. Terasaki; J. F. Stoddart; O. M. Yaghi
"Large-Pore Apertures in a Series of Metal-Organic Frameworks."
Science 2012, 336, 1018-1023
DOI: 10.1126/science.1220131
  M. Hmadeh; Z. Lu; Z. Liu; F. Gandara; H. Furukawa; S. Wan; V. Augustyn; R. Chang; L. Liao; F. Zhou;
E. Perre; V. Ozolins; K. Suenaga; X. F. Duan; B. Dunn; Y. Yamamto; O. Terasaki; O. M. Yaghi
"New Porous Crystals of Extended Metal-Catecholates."
Chem. Mat. 2012, 34, 3511-3513
DOI: 10.1021/cm301194a
  D. D. Medina; V. Werner; F. Auras; R. Tautz; M. Dogru; J. Schuster; S. Linke; M. Doblinger; J. Feldmann; P. Knochel; T. Bein
"Oriented Thin Films of a Benzodithiophene Covalent Organic Framework."
ACS Nano 2014, 4042-4052
DOI: 10.1021/nn5000223
  D. D. Medina; J. M. Rotter; Y. H. Hu; M. Dogru; V. Werner; F. Auras; J. T. Markiewicz; P. Knochel; T. Bein
"Room Temperature Synthesis of Covalent-Organic Framework Films through Vapor-Assisted Conversion."
J. Am. Chem. Soc. 2015, 137, 1016-1019
DOI: 10.1021/ja510895m
  D. D. Medina; M. L. Petrus; A. N. Jumabekov; J. T. Margraf; S. Weinberger; J. M. Rotter; T. Clark; T. Bein
"Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films."
ACS Nano 2017, 11, 2706-2713
DOI: 10.1021/acsnano.6b07692
  M. Kriebel; K. Weber; T. Clark
"A Feynman dispersion correction: a proof of principle for MNDO."
J. Mol. Model. 2018, 24, 338
DOI: 10.1007/s00894-018-3874-6
  D. Medina; A. Mähringer; T. Bein
"Electroactive Metalorganic Frameworks."
Isr. J. Chem. 2018, 58, 1089-1101
DOI: 10.1002/ijch.201800110
  E. Virmani; J. M. Rotter; A. Mähringer; T. von Zons; A. Godt, T. Bein, S. Wuttke, D. Medina
"On-surface Synthesis of Highly Oriented Thin Metal-organic Framework Films through Vapor-assisted Conversion."
J. Am. Chem. Soc. 2018, 140, 4812-4819
DOI: 10.1021/jacs.7b08174